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The physicochemical properties of aqueous sodium glycinate solution such as density, viscosity, surface
tension, alkalinity, and pH were measured over a wide range of mass fraction (0.1 to 0.5) of sodium
glycinate and at T ) (303.15 to 353.15) K. The measured data were correlated with standard equations,
and parameters were reported along with average absolute deviations.

Introduction

The goal of CO2 separation and capture is to isolate CO2

from its many sources and its utilization in many techno-
logical applications including coal conversion, organic
synthesis, destructive oxidation of hazardous wastes, en-
hanced oil recovery, and activated carbon regeneration.1,2

The most likely options for CO2 separation and capture
include chemical absorption, physical and chemical adsorp-
tion, gas-separation membranes, mineralization/biominer-
alization, and vegetation.3-12 The CO2 absorption process
using aqueous amine solutions have been extensively used
for the removal of CO2 from gas streams in many indus-
tries. This process based on the principles of chemical
absorption of CO2 via alkanolamines like monoethanola-
mine, diethanolamine, or N-methyldiethanolamine is con-
sidered to be a potential technique for capturing green-
house gas emission from flue gas streams. Wet chemical
stripping of CO2 involves reversible chemical reactions
between CO2 and another material such as alkanolamine
solution to produce a liquid species which, upon heating,
breaks down to liberate CO2 and regenerate the original
material used to react with CO2. The amine solution has a
limited lifetime due to degradation through oxidation of
the amine. In addition, corrosion problems are usually
observed for the aqueous amine process. In the past,
sodium glycinate in glycerol was used in an immobilized
liquid membrane in closed loop life support systems, such
as in spacecraft or space suits, for removal of carbon dioxide
from the atmosphere.13-15 This prompted us to study the
aqueous sodium glycinate solution for the absorption of
CO2. The physicochemical properties of aqueous solutions
such as density, viscosity, surface tension, alkalinity, and
pH are necessary for the design, operation, and optimiza-
tion of acid gas treatment equipment and also for measur-
ing other physical properties such as liquid diffusivities and
gas solubility.16-19

The objective of this research is to study the physico-
chemical properties such as density, viscosity, surface
tension, and alkalinity of aqueous sodium glycinate solu-

tion that will be utilized to study CO2 absorption in our
future work.

Experimental Section

The chemical absorbents (sodium glycinate and mono-
ethanolamine) used in this study were obtained from
Sigma-Aldrich Chemical Co. with a mass purity of >99 %.
The aqueous solutions were prepared from doubly distilled
water. All solutions were prepared by mass with a balance
precision of ( 1 × 10-4 g.

Density. The densities of aqueous sodium glycinate
solutions were measured by a 25 mL Gay-Lussac pycnom-
eter using the ASTM D3505 standard test method.20 The
temperature of water bath was controlled by a VTRC-620
circulator (JEIO TECH Inc., Korea) to within ( 0.05 K of
the test temperature. The densities of aqueous sodium
glycinate solutions were calculated by the observed mass
of the sample and that of the degassed distilled water. The
density of water was taken from literature.21 The uncer-
tainty of measurement was ( 0.0001 g‚cm-3. Each data
point reported was taken as an average of six reading with
a standard deviation of ( 0.0001 g‚cm-3.

Viscosity. The kinematic viscosities of aqueous sodium
glycinate solutions were measured by RheeStress1 viscom-
eter (HAAKE Instruments Inc.) with an uncertainty of (
0.001 mPa‚s. The temperature of water bath was controlled
within ( 0.05 K of the test temperature. An electronic
torque of an accuracy of 300 cycle‚s-1 was used to measure
the efflux times of the liquid solution. The dynamic
viscosities were calculated by multiplying kinetic viscosity
with the measured density. Each data point reported was
taken as an average of six readings.

Surface Tension. The surface tension of the aqueous
sodium glycinate solution was measured using a Sigma 70
automated tensiometer that employs the Du Noüy ring-
detachment method with an uncertainty of ( 0.01 mN‚m-1.
The platinum ring was thoroughly cleaned and flame-dried
before each measurement. All solutions were thermostated
in a water thermostat with a precision of ( 0.05 K. Each
data point reported was taken as an average of six readings
with a standard deviation of ( 0.01 mN‚m-1.

The accuracy of density, viscosity, and surface tension
measurements was checked by measuring the densities,
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viscosity, and surface tension of pure monoethanolamine
at different temperatures. The results were found to
compare well with their literature values (Table 1).22-24 The
uncertainties of the measured densities, viscosity, and
surface tension were estimated to be ( 0.0005 g‚cm-3, (
0.001 mPa‚s, and ( 0.04 mN‚m-1, respectively, on the basis
of comparisons with literature data. 22-24

Alkalinity and pH. Alkalinity is the capacity of a
system to neutralize acid. The experimental method was

in accordance with the ASTM D501 standard test method.20

The alkalinity measurements were made at T ) (293.15
to 333.15) K. The mass fraction (wSG) of aqueous sodium
glycinate solution was varied from (0.1 to 0.5). The pH of
aqueous sodium glycinate solutions was measured at T )
298.15 K by using a pH meter (model 290A+, Orion Inc).
The experimental method was in accordance with the
ASTM D70 standard test method.20 The mass fraction of
aqueous sodium glycinate solutions was varied from (0.1
to 0.5).

Results and Discussion

We are unaware of any previously published data on
aqueous sodium glycinate solutions with which to compare
our results. The measured density (F) and viscosity (η) data
of aqueous sodium glycinate solutions of various mass

Table 1. Densities (G), Viscosities (η), and Surface
Tension (σ) of Pure Monoethanolamine

F/g‚cm-3 η/mPa‚s σ/mN‚m-1

T/K
this

study
ref
22

this
study

ref
23

this
study

ref
24

303.15 1.0095 1.0098 15.109 15.1088 48.12 48.14
313.15 1.0013 1.0009 10.021 10.0209 46.42 46.46
323.15 0.9924 0.9929 6.970 6.9715 44.78 44.81

Table 2. Densities (G, in g‚cm-3) of Aqueous Sodium
Glycinate Solutions (Mass Fraction)

wSG

T/K 0.1 0.2 0.3 0.4 0.5

303.15 1.0332 1.0800 1.1214 1.1598 1.2066
313.15 1.0296 1.0763 1.1176 1.1558 1.2026
323.15 1.0252 1.0718 1.1129 1.1510 1.1975
333.15 1.0201 1.0665 1.1075 1.1455 1.1918
343.15 1.0145 1.0607 1.1015 1.1393 1.1854
353.15 1.0082 1.0542 1.0947 1.1324 1.1782

Table 3. Viscosities (η, in mPa‚s) of Aqueous Sodium
Glycinate Solutions (Mass Fraction)

wSG

T/K 0.1 0.2 0.3 0.4 0.5

303.15 1.261 1.331 1.746 2.588 4.413
313.15 1.184 1.248 1.408 2.152 3.338
323.15 1.137 1.207 1.348 1.594 2.252
333.15 0.957 1.165 1.257 1.413 2.165
343.15 0.687 0.990 1.215 1.344 1.167
353.15 0.630 0.867 1.120 1.192 1.549

Table 4. Parameters of Eq 1 and AADs for Density
Correlations of Aqueous Sodium Glycinate Solution
(Mass Fraction)

wSG A1 103‚A2 106‚A3 AAD %

0.1 0.8353 1.644 -3.268 0.032
0.2 0.8698 1.733 -3.429 0.079
0.3 0.8974 1.833 -3.607 0.120
0.4 0.9419 1.807 -3.589 0.158
0.5 0.9740 1.915 -3.786 0.077

Table 5. Parameters of Eq 2 and AADs for Viscosity
Correlations of Aqueous Sodium Glycinate Solution
(Mass Fraction)

wSG A1 A2 A3 AAD %

0.1 -8.1020 5043.5682 298.0741 0.197
0.2 -4.402 2875.9320 307.3280 0.198
0.3 0.0272 9.8635 -284.4601 1.067
0.4 -0.7336 100.5007 -243.8311 0.013
0.5 -1.5975 296.4958 -207.0051 0.085

Table 6. Surface Tension (σ, in mN‚m-1) of Aqueous
Sodium Glycinate Solution (Mass Fraction)

wSG

T/K 0.1 0.2 0.3 0.4 0.5

293.15 40.12 42.96 44.95 49.07 51.93
303.15 36.89 39.82 41.79 45.42 48.30
313.15 33.93 36.45 38.43 42.05 44.55
323.15 30.07 33.31 35.34 38.56 40.76
333.15 28.14 29.94 31.90 34.89 37.00

Figure 1. Values of the density as a function of temperature for
aqueous sodium glycinate solution of different mass fractions; b,
0.1; O, 0.2 1, 0.3; 3, 0.4; 9, 0.5.

Figure 2. Values of the viscosity as a function of temperature
for aqueous sodium glycinate solution of different mass fractions;
b, 0.1; O, 0.2 1, 0.3; 3, 0.4; 9, 0.5.
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fractions (0.1 to 0.5) at T ) (303.15 to 353.15) K were
recorded in Tables 2 and 3, respectively. The measured
data were then regressed using the following equations:

where X () F or σ) is the density or surface tension, N is
the number of data points, and Ai (i ) 1 to 3) are the
regression parameters calculated by least-squares method
and reported in Tables 4 and 5 along with average absolute
deviations (AADs) between calculated and measured val-
ues. Variation of measured densities and viscosity with
temperature is shown in Figures 1 and 2. It was found that
while density increases linearly with an increase in sodium
glycinate mass fraction and decreases linearly with a
decrease in temperature, viscosity decreases with an
increase in temperature and the decrease is more sharp
in case of higher mass fraction. Similar trends were
reported in the literatures for MEA solution.24

The surface tension data of aqueous sodium glycinate
solution at T ) (293.15, 313.15, and 333.15) K for various
mass fractions (0.1 to 0.5) were recorded in Table 6. The
measured data were then regressed using eq 1, and Ai

parameters together with AADs were recorded in Table 7.
It was found that surface tension increases linearly with

an increase in sodium glycinate mass fraction and de-
creases with a decrease in temperature (Figure 3). Similar
results were also reported by Matubayasi et al.25 This

behavior is opposite that of an alkanolamine solution where
surface tension decreases with a decrease in the mass
fraction of an alkanolamine aqueous solution.26-28

Next we recorded the measured alkalinity of aqueous
sodium glycinate solution in terms of mass fraction of
sodium hydroxide (wNaOH) at T ) (293.15, 313.15, and
333.15) K for various mass fractions (0.1 to 0.5) and pH of
these solutions at T ) 298.15 K in Table 8. It was observed
that alkalinity and pH increase with an increase in mass
fraction and alkalinity was independent of temperature.
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